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SECTION 1

INTRODUCTION aST
The hydrodynamic forces and moments are derived (in Reference 1) for tanks pos-
sessing a longitudinal axis of symmetry. These forces and moments are given in

terms of coefficients which depend only on the tank geometry.

This report explains the steps used to obtain these coefficients, given the tank geom-
etry, and the procedures used in the program check-out. A description of the routines
used in the program is included as well as instructions for use of the program. The
output of the digital program gives the spring-mass parameters associated with the
system,

223/5 AL

The digital routines were developed and programed by Roger Barnes.
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SECTION 2
SYNTHESIS OF EQUATIONS
2.1 HYDRODYNAMIC EQUATIONS. The equations which describe the sloshing of

liquid propellant in a tank consisting of an arbitrary curve rotated about an axis of
symmetry are derived in Reference 1 and are:

(o]

n=7y, £n(t) sin 6 <I>n (r,z) - , 2.1)
n=1

F,'= -Ma, (2.2)

F, = Ma, —ML1<9 - Mn§1 bnyngn (2.3)

=
]

’ 2t o
1 MLl % v I11 s - an=:1 7n ’a3bn€n ¥ [L(bn B hn)

LbleE 2.4
L n] gn] (2.4)
where
7 is the surface wave height

F3' and F2' are forces in the x3 and x2 directions (see Figure 2-1)

’ is the moment about the x_ axis

T, 1

<I>n(r ,2) are eigenfunctions

and
gn(t) is given by the solution of (2.5).
. n ..
+a — = - - - - 8 )
gn(t) a3 T gn(t) Knbnoz2 (t) Kn [L 1bn L (bn hn)] (t) (2.5)
Lu.\n2
The Kn = p are nondimensional frequencies, L is the distance from the center of

3
gravity of the liquid to the undistrubed free surface, and L1 is the distance from the
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center of gravity of the liquid to an arbitrary point along an extension of the line AC
(see Figure 2-1),

z
(x3)
A
P, n)
C—— \ B
L
0) . r
(%2)
A
d r=F(z)
X1

Figure 2-1, Tank of Arbitrary Shape

The component of acceleration along the x (x2) axis is denoted by a3 (az). The con-
stants in (2.3), (2.4), and (2.5) are given :?)y

B
7L 2
yn—-v—/r[qﬁn (r,L)] dr 2.6)
C
B
o 2
n_Vynfr <I>n (r,L) dr (2.7)
C
B
27
N f zrcﬁn(r,z)dz (2.8)
nn
A
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and
- 2 2 2 2
I, —pf x, +x, )dV—4pf X, dV+2pL/ x v, ¥, ds
uv uv US

+ leM (2.9)

M is the total mass and V the total volume of the liquid.
b =sin6|Ar+Y AL (rycosp z+d)|, s =et (2. 10)
1 o nl " n n ""n h

n=1

where An is to be determined from the equation

> , dF .
A0 +§:1Anun 1" (4 F(z)) cos b2 d) +EZ—11 (1 F(z)) sin B+ d)
n:
=3-Zz—, -dsz=<L (2.11)
L

To find an approximation for zbl, truncate the series to include N + 1 terms. Evaluate
(2.11) at N + 1 points (zi) on the boundary to obtain the following set of linear equations
for the determination of the An’ i.e.

N
/
A +3° Ap L W Fz)) cos u (z, +d)

n=1
dF 22
+-&;— (Zi) I1 (unF(zi)) sin ;.tn (zi +d)} = L2 ,1=1,2,..., N+1 (2.12)

where r = F(z) is the equation of the boundary AB,

2.2 SYNTHESIS FOR DIGITAL SOLUTION, The boundary value problem for the
determination of the eigenfunctions, <I>n, and eigenvalues, Kn’ is

achn , % 8 azq:n
2 "Taw 3T 0 (2.13)
-} iy JZ



n ——
v 0 (on AB) (2.14)
a@n Kn
—a—z—‘—‘--—L—- @n (on BC) (2.15)

It has been shown (Reference 2) that the Kn/ L may be found by minimizing the

e e e

K__UA
—I_:_ (2.16)

Jpen]
UFS

To reduce the magnitude of the variables in integration, make the problem described
by (2.13) through (2. 16) nondimensional by letting

R=r/a
Z=z/a
$ (Ra, Za) =¢ R,Z)
and
a = the distance from B to the z-axis.
If the free surface of the liquid does not intersect the center line of the tank, A and

C coincide. In this situation, let the distance from the z-axis to point C be designated
by R;, and define € = Rl/a.

Thus
2 2
i%+_f1{_§%._%+_a__<;.=o @.17)
JR R 0Z
a_s =0 (on AB) (2.18)
39 .Ka
-1 ¢ (on BC) (2.19)



2 2 2
o Af [(%%) , (%) +(:—;) ]RdeZ
Xa_ = (2.20)
/ [¢(R, L/a)]2 RdR
C

where the integrations are over nondimensional limits (see Figure 2-2).

Z
|
1
A ' B
- R
d/a
€=R1/a

Figure 2-2. Nondimensional Geometry

Following the pattern of Reference 2, let ¢ be expressed as a linear combination of
the eigenfunctions for a shallow tank and eigenfunctions for a deep cylindrical tank,
and use a Rayleigh-Ritz technique. Let

Ka ‘
A= T (2.21)

and substitute

N* N
o= c ¢ ®7) (2.22)
n=1



.

into (2.20); differentiate with respect to ¢, » and set the result equal to zero to obtain

> [a - ]c =0,m=1, 2, ..., N* (2.23)
mn mn mn
n=1
where
* * ok * *
a¢m 5¢5n ¢m '¢n a¢m 3¢
- n
2 n f SR oR =2 "3z T3z | RdRdZ (2.24)
UA
B
* * / 2.25
bmn—f ¢, ® L/a)¢n (R, L/a) RdR (2.25)
C

*
The set of functions ¢n (R,Z) are chosen, for reasons mentioned previously, as

g2l n=1,2, ..., M<N*

g* R, Z) = (2.26)
n j, (Z-L/a)
J,G,R) e ,n=M+1, ..., N¥

where

Jl’ (G) =0 (2.27)
and the first root of (2. 27) is called M+t

The b are calculated as
mn

1 om-1 2n-1 ] - Gntem
= m- - ==_-¢ <
bmn__/ R R RIR=————— m, nSM @. 28)
€
1
= j j 3 b >
fRJl (_]nR)J1 (]mR) dR m, n >M
€
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. . 1 4 . . ’ .
Jmel(]nf) J1 (Jm€) JneJ1 (Jme) J1 (Jne)

b = .2
mn — 2 2 ,m, n>M (2.29)
Jm T m#n
. 2 2 . ' s 2 .2 2 2 .
G, -1 J, x) - €9 (Jne) -G, € -3, 69
b = ,n>M (2.30)
nn . 2
2j
n.

1
b =fR2mJ G R)dR, m < M <n
mn 1" n

€

1 . 2m-1 . . /AN
== [(Zm - 1) J1 (Jn) - € (2m - 1)J1 (Jne) - Jn€J1 (JnF)

i

n
- 4m (m - 1) b(m—l)n] (2. 31)
where
b=—-1—'J'—'J' +.22J,. 2. 32)
1n j3 Jn l(ln) Ih€ l(JnG) hh €91 (JnG) (2.
n

Substitute the value of ¢m* from (2.26) into (2.24) to obtain the following expressions

for an Thus, by Green's theorem

a =f [ |(2m ~1)@n-1) + 1| R2“+2m'4] RARAZ, n.m < M
UA
2n+2m-
= - [4mn-2(n+m-1)]9§11n 2m-3 4R
C (2. 33)

(see Reference 3, p. 239)



In a similar manner

j (Z-L/a)
_ 2m-2 d . n

amn —f [(Zm -1 R -a-ﬁJl (JnR) e

UA

2m-3 RdRAZ, m <M <n

jn(Z-L/a)]
+R J1 (JnR) e

j (Z-L/a)
1 2m-1 2m-2 n

= - - . I . d.R, .
_jn4> [(2m 1) R JnJ 1 (JnR) +R Jl(]nR) e (2. 34)

C
and

_ d _od 1 .
a = f [R R 7 6P RI 0,B *R I G R I G_R)
UA

jn(Z-L/a) jn(Z-L/ a)
+R jnjm J1 (jnR) Jl(ij)] e e dRdZ, n, m >M

1 « s ! e 7 ;e _1 . .
= --z-ﬂﬁ I3 J1 (JnR) J1 (JmR) +R J1 (JnR) J1 (JmR)
C . )
(Jn+Jm) (Z-L/a)
+ RJnJm Jl(JnR) J1 (JmR)

- - dRn, m > M (2. 35)
Jn +Jm

Once the bmn and a___ are ci?termined, the eigenvalue problem can be solved yielding
X and the corresponding c, -

th

The k™ mode is given by

kK & oy
| & =ch ¢ * R, Z) (2. 36)

n=1
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Its dimensional form is

N*
k
¢ (v, z) =§ c ¢ * (r/a, z/a). (2.37)

It is this value which must be used in the evaluation of (2. 6), (2.7) and (2.8). The Kn
are given by

L
K =—2\ (2. 38)
n -a ‘n
Thus
B
b =—"—f 2% (r, L)dr
n V-yn n
C
N* B
_m n 2
Vy ckf r g (r/a, L/a) dr
D=1 ¢
N* 1 3 N*
Ta n/ 2 _Ta n
=—3Y ¢ R°¢% *R, L/a)dR =—)_ c b (2. 39)
k 1k
V‘)’n =1 k n vynk=1
€
Similarly
L 20 n
Y ="; 22 cknc, by (2. 40)
" k=1i=1 !
3 N*
2ma n,_ *
= 2.41
B vy K kz—:l °% M ( )
Where
P 2
hn*=f ZR“"4Z n< M (2. 42)
A
B j (Z-L/a)
h * =f ZRJ, G R)e dZ M <n < N* (2. 43)
A



Finally consider the evaluation of I11 )

2
pf (x22 +x3 )y dv = pnf (rz + 222) rdrdz

uv UA
5 3 2RZS
=-pna95 Rz + 282 ) g (2. 44
C
2 g 3
- 4p/ x, 4V =7‘°—’3'a— RZ°dR @. 45)
U
v c

B ©
2 ~ 2 _

2po XV, $dS = 207 L f zr [Aor +n)_:,1 A L (ur)cosp (z +d)|dz  (2.46)
US A
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SECTION 3
ROUTINES OF THE COMPUTER PROGRAM

The routines of the computer program are coded in the FORTRAN IV language, with
the exception of parts of a SHARE simultaneous equation routine (SOLVE) and a
SHARE eigenvalue routine (RWEG2F).

3.1 DRIVER ROUTINES. The boundary value problem requires solution of the
eigenvalues of (2.23). Elements of the ay,;, and b, matrices are computed for ten
eigenfunctions, of which the first five are polynomials. The integration to evaluate
the a,,  elements is described in Section 3.2, The Bessel functions needed for the
elements of both matrices are computed by a routine described in Section 3.3. The
resultant eigenvalues, and their eigenvectors, are found by the Jacobi method using
the routine RWEG2F.

Routine RWEG2F solves an eigenvalue problem of the form:

] - [e] b
where the B matrix must be positive definite. ‘Now it was found that the b, = matrix

did not satisfy this requirement, though the & matrix did, Therefore, letting
[A] [b ]and [B] [ ] , (3.1) is rewritten:

Plf] = Bl
where
A/ =% : (3.3)

The )’ eigenvalues are found and then inverted to give the desired eigenvalues of
(2.23). Each corresponding eigenvector is normalized by its largest element.

For each mode of oscillation entered as input data, the nondimensional frequency (Kn)
is computed by (2.38). Force and moment coefficients Oy bn’ and h_) are computed
using (2.39) through (2.43), where the hn* factor of hn employs a Bessel function,
Section 3.3, and integration, Section 3.2. The above coefficients are then combined
as in (2 47) through (2. 52) to yield the spring-mass parameters (m n /a

m , o’ and I ) The center of rotation is assumed to be at the bottom of the tank
Therefore, L = d in the expressions for 'en’ 20, and Io. The I._ ' term of I is found
by (2.9). The first two terms of I ' are found by the integration described 0
Section 3.2.
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Calculation of the third term of L1 " requires the solution of a set of simultaneous
linear equations, yielding the coefficients, A_. Equation (2.12) is evaluated at selec-
ted points on the rigid tank wall below the undisturbed free surface. The total number
of points selected, n, must be such that:

nTR

(1) ——33553 40.0

where Rmax is the maximum radius of the rigid tank wall below the undisturbed free
surface,

(2) n<50

Restriction (1) is necessary to prevent the modified Bessel function in the equation
from exceeding about1016, making other terms of the equations completely insignifi-
cant. Restriction (2) is set by program core storage limitations. In general, points
selected by the program will be end points of segments with equally spaced points be~
tween, point B, and point C (if € # 0) on Figure 2-2. The resultant set of simultane-
ous linear equations is solved by the routine SOLVE. Integration, again as in
Section 3.2, is then done on (2.46) with the coefficients, An'



3.2 INTEGRATION. Integration is performed using Gauss's Quadrature Formula:

b 1/2
/ f(u) du = (b-a) / d)dt=5 8t )+S, D). ..
2 -1/2

+8 ) t) (3.4)

where n is taken to be 16 and u = (b-a) t + a.

The sum in (3.4) is taken by adding the smallest term to the next largest and so on,
to obtain the most accuracy when f(u) is increasing from a to b.

Two integration routines were written:
1. INTGL1 - - for line integrals of the form

B
f f (z) dz
A

The line integral is taken in a counterclockwise direction along each segment of
the rigid tank wall from A to B. (See Figure 2-1.)

B zZ9 z3 Zn
ff(z)dz=/f(z)dz+/ f(z)dz+...+/f(z)dz 3.5)
A Z1 z2 Zn-1
where

zy, 22, . . . , 2p.1 are the z-coordinate of end points of segments entered
as input; and zp is the z-coordinate at the outer radius of the undisturbed
free surface.

2. INTG2 -~ for line integrals of the form

f f(r) dr

C

The line integral is taken in a counterclockwise direction around the fluid of the
cross section of the tank as in Figure 2-1.
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B C

ff(r)dri/‘ f(r)dr+/ £ (r) dr 3.6)

C A B

With r-coordinate limits of integration for each segment of the rigid tank wall
from A to B and the undisturbed free surface, (3.6) is rewritten

r2 r3 a
ff(r)dr= /f(r)dr+/f(r)dr+ Jff(r)dr
C Tr1 r2 rn-1
Ry

‘ + /f(r) dr (3.7)
| a
| where

ry, r2, rg, . . . , rn~1 are the r-coordinate of end points of segments

entered as input; a is the outer radius; and Ry is the inner radius of the
undisturbed free surtace.

Equation (3.4) is then applied to each term of (3.5) and (3.7).
3.3 BESSEL FUNCTIONS. Two types of Bessel Functions are computed: the first

kind of order one (J1 (x) ) and its derivative (Ji (x) ), and the modified of order one
(I1(x) ) and its derivative (I] (x) ).

The BESSEL routine computes, in double precision, J;(x) and Ji(x) by the ascending

series:
et (E)
Jl(x)zz k! (k+1)! (3.8)
k=1
© (-1)k (%)Zk © (—l)k(g)Zk 3.9
T, )= z (k!)2 ) z 2 k! (k1) ! -9
k=1 k=1



Each term of the above series is found by multiplying the previous term by the appro-
priate factor:

2
(-1) (';i)

(k) (k+1)

2
(-1)(?)
K2

Since 0 = x = 14.863588 in the program, the above technique is sufficiently accurate
for the range of x,

for J_ (x) and the second part of J1' (x) (3.10)

for the first part of J, " (%) (3.11)

Routine RMODBS computes, in double precision, the I (x) and I " (x) by polynomial
approximations, with t = x/3.75.

For ~3.75 5 x=3.75:

2

L %)= x [ 1/2 + 0.87890594 t
4 6

+0,51498869 t + 0.15084934 ¢

+ 0,02658733 t8 + 0,00301532 t10

+0.00032411 t'2 ] (3.12)

I (x)
I (x) =1 x) -—— (3.13)

where

2
I (x)=1+3.5156229 t

+3.0899424 t4 + 1.2067492 t6

+0.2659732 t8 + 0.0360768 th

+0.0045813 t12 (3.14)
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For 3,75 s x <=

_1 2 -
I ) =x /2 x [0.39894228 - 0.03988024 t -

- 0.00362018 t_2 + 0,00163801 t_3

- 0.01031555 t © + 0.02282967 t >

- 0.02895312 ¢ © + 0.01787654 t |
- 0.00420059 t ° (3.15)
I’ ‘
11’ ® =1 () - —l—xﬁl (3. 16)

where

-1/2 -1
() =x /2 X 1o 39894228 + 0. 01328592 ¢

+0.00225319 t 2 - 0.00157565 t > + 000916281 t

- 0.02057706 t > + 0.02635537 t © - 0.01647633 t

+0.00392377 t'8] (3.17)
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SECTION 4
UTILIZATION OF COMPUTER PROGRAM

4,1 DESCRIPTION OF PROGRAM INPUT. Three sets of numerical data are re-
quired as input for a computer run. Sections 4.1.1 through 4.1,3 describe this data,
which is subject to limitations that are outlined in Section 4.1.4. All numbers are
entered on 80-column input forms. Each digit of a number or a decimal point (if
needed) occupies one column. Unless otherwise specified in the following sections, a
number must be entered with a decimal point, The decimal point may be anywhere
within the columns allocated for that number on the input form.

A number that must not have a decimal point must be right-adjusted. That is, all
digits must occupy the right-most columns of those allocated for the number; there
may be no blank columns between the number and the last column, inclusive.

Extremely large or small numbers may be entered as a coefficient times ten to a
power:

i U D S S N (S S W | 1

1 L1 131-L6|E1_|118 L

Here a decimal point must be in the coefficient, and the last digit of the exponent must
occupy the last column of those allocated for the number,

All coordinates required as input must be from a system in which the r-coordinate of
the centerline is zero, and the z-coordinate increases upward.

!




4,1.1 Problem Input. The first line of the input form contains that set of data re-
quired to set up the problem for the computer.

Columns Data

1 through 10 Enter the number of segments that describe the rigid tank
wall. The number must be right-adjusted, without a dec-
imal point.

11 through 20 Enter the number of modes of oscillation desired. The
number must be right-adjusted, without a decimal point.

21 through 30 Enter the liquid density (in pounds per cubic foot).

31 through 40 Enter the r-coordinate (in inches) of the beginning of the
segments that describe the tank.

41 through 50 Enter the z-coordinate (in inches) of the beginning of the
segments that describe the tank.

4,1.2 Tank Geometry Input. Beginning with the second line of the input form, a line
of the data below is required for each segment that describes the rigid tank wall. Seg-
ments must be ordered in a continuous, counterclockwise path around the tank, The
number of these lines of input must equal the number entered in columns 1 through 10
of the first line (i.e. number of segments).

Columns Data

1 through 10 Enter the r-coordinate (in inches) of the end of the partic-
ular segment, having proceeded along it in a counterclock-
wise direction around the tank.

11 through 20 Enter the z-coordinate (in inches) of the end of the particu-
lar segment, having proceeded along it in a counterclock-
wise direction around the tank.

21 through 30 Leave blank for a straight line segment; otherwise, enter
as follows, depending on the type of segment:

Elliptical. Enter the r-coordinate (in inches) of the center
of the ellipse.

Circular. Enter the r-coordinate (in inches) of the center
of the circle.
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Columns

21 through 30
(Contd)

31 through 40

41 through 50

51 through 60

61 through 70

Parabolic. Enter the r-coordinate (in inches) of the vertex
of the parabola.

Leave blank for a straight line segment; otherwise, enter
as follows, depending on the type of segment:

Elliptical. Enter the z-coordinate (in inches) of the center
of the ellipse.

Circular. Enter the z-coordinate (in inches) of the center
of the circle.

Parabolic. Enter the z-coordinate (in inches) of the vertex
of the parabola.

Leave blank for a straight line segment; otherwise
enter, depending on the type of the segment, as fol-
lows:

Elliptical. Enter the semimajor axis (in inches) of the
ellipse.

Circular. Enter the radius (in inches) of the circle.
Parabolic. Enter the directrix (in inches) of the parabola.
Leave blank for a parabolic or straight line segment;
otherwise enter, depending on the type of the segment,

as follows:

Elliptical. Enter the semiminor axis (in inches) of the
ellipse.

Circular. Enter the radius (in inches) of the circle.

Leave blank for a circular or straight line segment; enter
the amount of counterclockwise rotation from the norm
(se'e below) of the ellipse if the segment is elliptical, or of
the parabola if the segment is parabolic. It may be left
blank for an angle of zero degrees.
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Normal Position of an Ellipse

SEMIMINOR AXIS

CENTER SEMIMAJOR AXIS

Normal Position of a Parabola

VERTEX

r

4.1.3 Case Input. Each case to be run requires a line of input as listed below. Any
number of cases may be run.

Columns Data
1 through 10 Enter the z-coordinate (in inches) of the liquid level in the tank.

4.1.4 Limitations on Input. The following restrictions must be applied to the input
data.

1. There can be no more than 50 segments,

2. Each segment must be such that for a given radius, there is only a single
value of the height.



i.e. A toroid must be described by four segments of the same circle:

b — e —

3. The liquid level must not indicate a completely full tank.
4, There can be no more than ten modes of oscillation.

5. Do not enter the centerline segment unless it is, in reality, a part of the
rigid tank wall.

4,2 DESCRIPTION OF PROGRAM OUTPUT. Printed output on a computer run con-
sists of the following:

1. Tank Geometry. A complete definition of all segments entered as input.
And for each liquid level case:

2. Liquid Level. The z-coordinate (in inches) of the undisturbed free surface
in the tank.

3. Mass of Liquid. The mass (in pounds) of the liquid contained in the tank.

4. Center of Gravity. The z-coordinate (in inches) of the center of gravity of
the liquid.

‘ . . 2
5. I11 and its four terms (in lb~in. ).

6. Eigenvalue Statistics. These, for each mode requested, are the eigenvalue
and the eigenvector and its normalizing factor.

7. For each mode requested, the coefficients (Kn, )’n, bn’ and hn) of the
force and moment equations.



8. For each mode requested, the following parameters for the spring-mass
analogy:

mn (in pounds)
z . .
n (in inches)
K */a_ (in Ib/in.
. /i 5 (in /in.)
9. Also, the following spring-mass parameters:
mo (in pounds)
Zo (in inches)
2
in Ib-in.
I0 (in Ib-in. )
These parameters are a summation for all modes of oscillation entered as
input data, and printed out in item 8 above., Therefore, if a one-mode
analysis is to be used, only one mode should be entered as input data.
4.3 SETUP FOR A COMPUTER RUN. A run on the computer requires a card deck
containing system control cards, the program binary deck, and input data cards.

The input data is punched on cards from the 80-column coding form described in
Section 4.1, Arrangement of the deck will be as shown in Figure 4-1,

The program is designed to be run under the IBSYS monitor system. For the IBM
7094 computer, execution time estimates should be based on about 10 millihours per
segment per liquid level case.
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SECTION 5
CHECK-OUT OF THE DIGITAL PROGRAM

The output of the computer program was checked against the experimental and (if
possible) theoretical data available for tanks comprised of spheres, toroids, oblate
spheroids, right circular cylinders, and concentric right circular cylinders.

The volume and center of gravity of the fluid as well as the first two integrals in

(2.9) may be easily checked out by hand-calculation for any tank configuration. The
nondimensional frequencies, K, may be checked for any tank configuration that has
analytical or experimental results available, The operations involved in finding

these five quantities constitute the major portion of the program. The rest of the
program simply manipulates these terms. Thus if these five quantities are calculated
properly and the multiplications and additions required for the evaluation of the rest
o_f the terms are checked out for a particular case, one is assured that the entire pro-
gram is working properly, The only term which must be checked out in a different
manner is the third term of (2.9). The boundary value problem for ¢ | (see Reference
1, Equations 3.10 and 3,11) may be solved explicitly for specialized cases only. The
shapes checked out here were for a right circular cylinder at various liquid levels.
For a cylinder of radius 60 inches and liquid level 50 inches the calculated value was
1,36 X 108, the computer obtained 1.3779 X 108. For a liquid level of 240 inches,
note the comparison of I, on page 5~6. Since Y, is approximated using Bessel func-
tions, the routine is not very accurate for elliptical or spherical tanks. However

if the tank is "close to cylindrical' in shape, the output is good. That is, for the

two Atlas tanks the routine calculates I, properly. A rough check on this term for
any tank shape is to compare the four terms comprising 111, . If the third term is

of different magnitude than the other three, it is not usable. The approximation

then used is that I,, * equals the sum of the first and fourth terms.

The routines for a parabolic section were checked by using a cylindrical tank of
radius 60 inches with a parabolic bottom. The parabola had a directrix of 5000 and
thus approximated a straight line. The difference between the output for this shave
and the output for a cylinder with a flat bottom were different only in the third signi-
ficant digit.



Figure 5-1 shows the comparison of the lowest three frequencies of a spherical tank
(radius of 60 inches) with a graph from Reference 3. In this figure, where R is the
radius of the sphere and h the liquid height, note that the lowest frequencies fall on
the dark line while the next two sets of frequencies appear at times to be closer to
the experimental rather than the theoretical results.

The check for the lowest frequencies for an oblate spheroidal tank is given in Figure
5-2, The tank used in this program had a semimajor axis of 26.26 and a semiminor
axis of 13,13 and was compared with the results in Reference 4. Note that only the
lowest mode frequencies are shown here, The frequencies for the second mode were
50 percent greater than test data, This is explained by the statement of Reference 2
-~ that the accuracy depends on the choice of eigenfunctions and the experience
Rayleigh (Reference 5) had in approximating an ellipse using Bessel functions.

The comparison of frequencies for a toroidal tank, with results from Reference 6, is
shown in Figure 5-3. Note the good agreement for the two lowest modes.

The frequencies for a ring tank, inner radius 10 inches and outer radius 60 inches,
were checked against the analytical solution for a liquid height of 50 inches. (Use
must be made of the tables in Reference 7.) The results appear in the table below.

ANALYTICAL COMPUTER
K1 0.6618 0.6616
K2 2.090 2.091
K3 3.481 3.496
K4 4,956 4,933

The program's entire output may also be checked out against the analytical solutions
(Reference 1, p. 3-8) for a right circular cylindrical tank. Because of a difference
in normalization in the computer program and the analytical work, the parameters
Y., b_, and hn may not be directly compared, However the combinations ¥ b,“,
bn/hn, and Ypbph, which appear in the spring-mass parameters are independent of
the normalization. Thus, if the spring-mass parameters check out (using results of
Reference 1, p. 3-8) the ¥,, by, h, are being calculated properly. If desired, how-
ever, these combinations could be checked out by themselves. The comparison of
parameters is given in the following table for a tank of radius 60 inches and height of
300 inches, filled to a depth of 240 inches with a liquid having a density of 1.
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ANALYTICAL RESULTS

120,
3.682

10.663
17.073
4
3.729 X 10
-4
9,0965 X 10
-4
13.259 X 10
174.91
6
0.30837 X 10

9.4628 X 103
2.4059 X 106
112,96

6
2.7143 X 10
0.14973 x 101!
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COMPUTER OUTPUT

120,
3.
10.

17.

6823
663
073

.5969
.71901

. 0486

.0

.30841 X 106

.4639 X 103

.4059 X 106

.95

.7143 X 106
11

.15081 x 10
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